# Jordan canonical form by Chris Kottke

By Chris Kottke

**Read or Download Jordan canonical form PDF**

**Similar algebra & trigonometry books**

**An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra**

During this creation to commutative algebra, the writer choses a course that leads the reader during the crucial rules, with no getting embroiled in technicalities. he is taking the reader speedy to the basics of advanced projective geometry, requiring just a uncomplicated wisdom of linear and multilinear algebra and a few effortless staff concept.

**Inequalities : a Mathematical Olympiad approach**

This e-book is meant for the Mathematical Olympiad scholars who desire to arrange for the learn of inequalities, a subject matter now of common use at quite a few degrees of mathematical competitions. during this quantity we current either vintage inequalities and the extra valuable inequalities for confronting and fixing optimization difficulties.

This quantity offers the complaints of the foreign convention on ""Recent development in Algebra"" that was once held on the Korea complicated Institute of technology and know-how (KAIST) and Korea Institute for complicated examine (KIAS). It introduced jointly specialists within the box to debate growth in algebra, combinatorics, algebraic geometry and quantity concept.

- Introduction to Rings And Modules
- Functions and Change: A Modeling Approach to College Algebra
- An Introduction to Galois Theory [Lecture notes]
- Introduction to the Theory of Categories and Functors (Pure & Applied Mathematics Monograph)

**Additional info for Jordan canonical form**

**Example text**

3, in which we used the pairing x, y = xi yi . e. there is no split maximal torus. The basis 1 1 √ ,√ 2 2 , 1 1 √ , −√ −2 −2 realizes an isomorphism between√SO(2n) and {g ∈ SL(2n) : t g · g = 1}, but only √ after base change to the field Q( 2, −2). It is easy to verify that so2n = a b c − ta : a, b, c ∈ Mn and t b = −b, t c = −c . For a tuple λ = (λ1 , . . , λn ) ∈ Gnm , write diag∗ (λ) = diag(λ1 , . . , λn , λ1−1 , . . , λ−1 n ). Let T = {diag∗ λ : λ ∈ Gnm }; since ZSO(2n) (T ) = T , this is a maximal torus.

Proof. We’ll use two facts. 1. For n n 1, let n T = ker(T − → T ). 7]. 2. For each n 1 invertible in k, the scheme n T is finite ´etale over k. 2] is finite ´etale. Since X is connected, each X → hom(n T, n T ) is constant. By the first fact, we obtain that X is constant. 11. 10 fails for groups that are not tori. Let G = SL(2). Then the map G × G → G given by (g, h) → ghg −1 is a perfectly good family of homomorphisms that is not constant. One has PSL(2) → Aut(SL2 ), with image of index two. The other coset is generated by g → t g −1 .

Let g ∈ G(k). Then f (g)ss = f (gss ) and f (g)u = f (gu ). In other words, the Jordan decomposition is functorial. It follows that if G/k is an affine algebraic group (without a choice of embedding G → GL(n)), then the multiplicative Jordan decomposition within G is well-defined, independent of any choice of embedding. 7 Diagonalizable groups Let k be a field; recall that we are working in the category of fppf sheaves on Schk . The affine line A1 (S) = Γ(S, OS ) is such a sheaf. We have already written Ga for the affine line considered as an algebraic group.