# Classes Unipotentes et Sous-groupes de Borel by N. Spaltenstein

By N. Spaltenstein

Read or Download Classes Unipotentes et Sous-groupes de Borel PDF

Similar algebra & trigonometry books

An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra

During this advent to commutative algebra, the writer choses a direction that leads the reader during the crucial rules, with no getting embroiled in technicalities. he is taking the reader speedy to the basics of advanced projective geometry, requiring just a easy wisdom of linear and multilinear algebra and a few basic staff concept.

Inequalities : a Mathematical Olympiad approach

This booklet is meant for the Mathematical Olympiad scholars who desire to organize for the research of inequalities, a subject matter now of common use at numerous degrees of mathematical competitions. during this quantity we current either vintage inequalities and the extra beneficial inequalities for confronting and fixing optimization difficulties.

Recent Progress in Algebra: An International Conference on Recent Progress in Algebra, August 11-15, 1997, Kaist, Taejon, South Korea

This quantity offers the lawsuits of the overseas convention on ""Recent growth in Algebra"" that was once held on the Korea complicated Institute of technological know-how and expertise (KAIST) and Korea Institute for complex learn (KIAS). It introduced jointly specialists within the box to debate development in algebra, combinatorics, algebraic geometry and quantity idea.

Extra info for Classes Unipotentes et Sous-groupes de Borel

Sample text

Et la G d'omettre = 1 utilise tels permet 1 si espace classique permet graphes suivants qu'on S02n+1 homomorphisme ~ 2 des un groupes bijectif . Pour d'ordre 6tent groups G-G ~ cat groupes [V un (X,e) sont les ces un ici p = 2) sym6tries sont homomorphisme [quand = 2] cet dans que [p Ce On c 2 , .. des un trait6es consid6rer soit [contenue existe SP2 n provenant doric , , il questions S02n+1 potentes SP2 n p = 2 42 ; couples, 26 il a2] b] p=2 Si les deux copies de 24 : eux 4 @2 8 12 et b2 ] il permute entre eux 22@1 4 les Si u appartient Si u est dens ~ la l'une de classe et ees les deux deux classes correspondent copies copies Ao[U] 9 ~ de = I ; 24 o et 32 @ 12 42 o de A[u] = ~ , Ao(U ] ~G2 2 et ~ ~ 2 x~ 3 [u] p = 2 ~ ~ et et 2 tous Pour Chang les les [F 4, ~6], p = 2] appartient ~ ~ 2 x autres groupes A o [u] = 1 dens les un groupe correspondent & 6+2 , tables ~31] [E 6, du ~ on dispose unipotents, Shoji 024] A[u] et connexes ~l~ments [G 2] kS], classe 3 cas des ~] , Mizuno & la exceptionnels compl~te Enomoto eppareissent ies u A[u] classification E 7, [F 4, ~ Stuhler p # 2], E 8] chapitre due maintenant ~5], Shinoda Certains de d'une E291, ces IV.

Si connexes distingu6s mi- supposer aussi G que 1 connexes supposer et que G~ Si distinguEs encore que mi& o (G) oonnexe. 2. LEMME. 5. 7) . oO une 9 par on P~ de B alers u les tous 9 et sous- ~ (b) 8 Gu d~coule de a : point, alors eu V[s) bien ={v isemerphe 6U[uB)I dim & Ipt ; 6P = I } v et P ~ B per P o Alors . le lemme A1 ; Les u G P . 1) cas de men- suivants u 6 G -G ~ suit. 7) centre de GL(E) bilin6aire qu'il = U ~- /~1 9 de dimension a Si u 6 U deux cas. 3 9 et supposons . Alors unipotente.

18. PROPOSITION. 17), BG x . Soit est DO N = CG(S) BH u ont 2. Dimension Dans Les groupes GL n et si aussi La de de ce une , et la m ~ m e x = su r@union d'apr@s de ont la G est est dans H U- § B G B H = dim r@ductif a une , , Cu-(X]. 1) connexes, proposition la B G = dim x et 1 G des @l@- de G dimension, la m~me v6rifier Jordan et toutes routes dimension. l'assertion de sous-vari~t~s lee Alors x . O'apr~s isomorphes composantes con- ~ irr@ductibles B H, u de dimension. 118] . irr6duetibles cernant le dim globaux composantes montre que que les L'@galit@ volsinage Cu-(X)/U H § U-/U G coincident Soit un ~ait et ram~ne l'injection les est surjective.

Download PDF sample

Rated 4.56 of 5 – based on 43 votes